持续聚合
持续聚合是处理时间序列数据以提供实时洞察的关键方面。 Flow 引擎使开发人员能够无缝地执行持续聚合,例如计算总和、平均值和其他指标。 它在指定的时间窗口内高效地更新聚合数据,使其成为分析的宝贵工具。
持续聚合的三个主要用例示例如下:
- 实时分析:一个实时分析平台,不断聚合来自事件流的数据,提供即时洞察,同时可选择将数据降采样到较低分辨率。例如,此系统可以编译来自高频日志事件流(例如,每毫秒发生一次)的数据,以提供每分钟的请求数、平均响应时间和每分钟的错误率等最新洞察。
- 实时监控:一个实时监控系统,不断聚合来自事件流的数据,根据聚合数据提供实时警报。例如,此系统可以处理来自传感器事件流的数据,以提供当温度超过某个阈值时的实时警报。
- 实时仪表盘:一个实时仪表盘,显示每分钟的请求数、平均响应时间和每分钟的错误数。此仪表板可用于监控系统的健康状况,并检测系统中的任何异常。
在所有这些用例中,持续聚合系统不断聚合来自事件流的数据,并根据聚合数据提供实时洞察和警报。系统还可以将数据降采样到较低分辨率,以减少存储和处理的数据量。这使得系统能够提供实时洞察和警报,同时保持较低的数据存储和处理成本。